
Low Power FPGA Implementations of JH and Fugue Hash Functions 

George Provelengios
Dept. of Telecommunication 

Systems & Networks 
Technological Educational Institute 

of Mesolonghi, Greece
e-mail: georprob@ieee.org 

Nikolaos S. Voros 
Dept. of Telecommunication 

Systems & Networks 
Technological Educational Institute 

of Mesolonghi, Greece
e-mail: voros@teimes.gr 

Paris Kitsos 
Computer Science 

Hellenic Open University /      
Dept. of Telecommunication 

Systems & Networks 
Technological Educational Institute 

of Mesolonghi, Greece
e-mail: pkitsos@ieee.org 

Abstract — Low power techniques in a FPGA implementation 
of the hash functions called JH and Fugue are presented in this 
paper. The JH hash function is under consideration for 
adoption as standard. Pipeline technique (with some variants) 
and the use of embedded RAM blocks are the techniques in 
order to reduce the power consumption. Power consumption 
reduction between 6.3% and 33 % was achieved for JH 
function and similar a power reduction between 1.7% and 13.3 
% was achieved for Fugue by means of the proposed 
techniques compared with the implementation without any low 
power issue.  

Keywords-hash functions; low power techniques; FPGA; 
VIRTEX-5 

I. INTRODUCTION

A cryptographic hash function H is a transformation that 
takes a variable-size input m and returns a fixed-size string, 
which is called the hash value h (that is, h = H(m)). Hash 
functions with just this property have a variety of general 
computational uses, but when employed in cryptography the 
hash functions are usually chosen to have some additional 
properties [1].  

Among the available hash functions Secure Hash 
Algorithm-1 (SHA-1) [2] and Secure Hash Algorithm-2 
(SHA-2) [3] are the most known. However, serious attacks 
have been reported against SHA-1 [4]. Moreover, the SHA-2 
hash function belongs in the same general hash function 
family of SHA-1. Consequently,, both  can constitute 
potential candidates for attacking using similar techniques.  

After that the National Institute of Standard and 
Technology (NIST) organize a public competition to develop 
a new cryptographic hash function standard [5]. The new 
hash function will be called SHA-3 and will replace the 
functions in the SHA-2 family. The received hash algorithms 
are available for public comments in terms of security and 
hardware implementations efficiencies.   

JH [6] and Fugue [7] hash functions have been submitted 
to SHA-3 competition. In this paper FPGA implementations 
of JH and Fugue hash functions are proposed. Also, low 
power techniques are adopted for both algorithms. These 
techniques are implemented at gate level and reduce the 
amount of signal glitching within the circuit. JH function has 

been qualified on final-five SHA-3 competition while Fugue 
has not been qualified. For this reason the implementation of 
JH is presented in details and the characteristics of Fugue 
implementation will be used for comparison purposes. Our 
major goal is to explore area-speed trade-offs in the 
implementations of two hash functions, to compare the 
efficiency of the designs by examining the throughput per 
FPGA slice and finally estimate the effects of the low power 
techniques.  

The rest of the paper is structured as follows. In Section 2 
techniques for low power FPGA designs are briefly 
described. In Section 3, the core architectures of the two hash 
functions are described while in Section 4 the 
implementations of the low power techniques on the 
proposed JH and Fugue architectures are presented. 
Synthesis results, comparisons with previously published 
designs and estimations in power consumption are given in 
Section 5. Finally, Section 6 concludes the paper. 

II. LOW POWER FPGA TECHNIQUES

The power consumption PTotal of an FPGA is constituted by 
two components, namely the dynamic power, PDynamic and the 
static power, PStatic. Dynamic power is dissipated when 
signals charge capacitive nodes. Static power, on the other 
hand, has nothing to do with the activity of the circuit. Total 
static power is the combined total of each transistor’s 
leakage power and all bias currents in the FPGA. Dynamic 
power makes up the larger portion of the total amount of 
power consumed by an FPGA design. The gate level low-
power techniques that have been applied to the hash 
functions designs are briefly described below.  

Pipelining [8] is used in order to reduce the amount of 
signal glitching within the circuit. A pipelined design has 
less logic between registers and therefore is less prone to 
glitching.  

Clock gating provides a means of reducing switching 
activity, by disabling the registers reading data [9]; so they 
just keep their contents when they are inactive.  

In the double edge trigger (DET) pipeline [10], both 
rising and falling edges of the clock signal are used. A 
negative edge triggered Flip-Flop will hold the output wire 
state for the first half of a clock cycle, and when the clock 

2011 14th Euromicro Conference on Digital System Design

978-0-7695-4494-6/11 $26.00 © 2011 IEEE

DOI 10.1109/DSD.2011.56

417



signal toggles, the Flip-Flop will assume a new logic value. 
Power is saved because glitches are not propagated to logic 
circuit, simultaneously with a reduction of the circuit latency 
compared with the usual pipelining technique described 
above.  

Finally, RAM blocks [11] save general logic resources 
because they do not carry any programmable design routing 
with them. 

III. CORE ARCHITECTURES

The hardware implementation of the JH hash function is 
depicted in Fig. 1.  

Fig. 1. Hardware implementation of the JH hash 
function

The Padder pads the input data and converts them to an n-bit 
padded message. In the proposed architecture an interface 

with 512-bit input for Data In is considered. The Message 
Length, specifies the total length of the message. The padded 
message is partitioned into a sequence of t 512-bit blocks. 
Other basic components are the Initialization Vector, the 
Grouping and De-Grouping, the Hstate, the SBoxes layer, 
the L- and P- layers and Trancating.  

The initialization vector sets the initial hash value H(0) 
that is depending on the message digest size. The Grouping 
component groups the output XORed data and the output 
data from HState register into 4-bit elements according to the 
specifications. The opposite procedure is implemented from 
De-Grouping component. The De-Grouping component 
takes the data from SBoxes layer and re-assembles them in 
the original structure. Component Hstate is responsible for 
data synchronization at the begging of each new round. The 
SBoxes layer consists of two mini 4x4-bit s-boxes S0 and 
S1. Instead of being simply xored to the input, every round 
constant bit selects which s-boxes are used so as to increase 
the overall algebraic complexity. The linear transformation L 
implements a (4; 2; 3) Maximum Distance Separable (MDS) 
code over GF(24). Here the multiplication in GF(24) is 
defined as the multiplication of binary polynomials modulo 
the irreducible polynomial x4 + x + 1. P layer is a simple 
permutation on some elements according to the 
specifications. The final component Truncating gives the 
output of JH circuit which is depending on Hash Length 
signal. This output varied in 224-bit, 256-bit, 384-bit and 
512-bit blocks.  

For the algorithm execution 74 clock cycles are needed 
and a controller is responsible for the correct operation of the 
algorithm.  

Also, the hardware implementation of the Fugue hash 
function is depicted in Fig. 2a. The Padder pads the input 
data and converts them to an n-bit padded message. In this 
architecture an interface with 128-bit input for Data In is 
considered. The Message Length specifies the total length of 
the message. The padded message is partitioned into a 
sequence of, t, 32 blocks. Other basic components are the 
Initialization Vector, the TIX and SMIX, the ROR3 CMIX, 
the XOR ROR15 and XOR ROR14. The initialization vector 
sets the initial hash value of state S that depends on the 
message digest size. 

The TIX component executes some XOR operations, 
truncate blocks and inserts some bits in their input. The 
CMIX executes column mix, while ROR14 and ROR15 
executes rotation of the state S to the right by 14 and 15 
columns respectively. Finally, the SMIX transformation 
takes a 4 × 4 matrix of bytes, passes each byte through the S-
box layer (16 SBoxes in total), and then applies a linear 
transformation to the result. This transformation is called the 
Super Mix transformation. Fig. 2b also shows the 
implementation of Super Mix transformation. Actually, a 
matrix multiplication is executed between the outputs of the 
SBoxes and the matrix N (16x16) that is specified at the 
function specifications.  

418



Initialization

Vector 

Padder

TIX

ROR 3

CMIX

XOR

ROR 15

XOR

ROR 14

SMIX

Output Block

MUX1

MUX (3)

MUX4

SstateSstate

16 x SBOXes

Super Mix

MUX2

Data In

128-bit

Message Length

8-bit

Data Out

256-bit

960

704

256

960

256
32

32

288

128 832

128

960

960

MUX3

(a)

Fig. 2. a) Hardware implementation of the Fugue hash function, b) Hardware implementation of the Super Mix

According to the Fig. 2b some multipliers (x4, x5, x6 and 
x7) on field GF(28) are needed. These multipliers are simply 
implemented by shift registers and XOR gates.  

For the algorithm execution 49 clock cycles are needed 
and a controller is responsible for the correct operation of the 
algorithm.  

IV. IMPLEMENTATIONS USING POWER REDUCTION 
TECHNIQUES

In this section, the gate level low-power design techniques 
that have been applied to the JH and Fugue architectures are 
described.   

The first pipeline technique with only positive edge Flip-
Flops is symbolized as JH_positive, the pipeline technique 
with the use of gating clock is symbolized as JH_gating and 
finally the pipeline technique with positive and negative edge 
Flip-Flops is symbolized as JH_negative. The technique with 
RAM blocks is symbolized as JH_RAM.   

In the JH_positive technique the three pipeline registers 
are placed between the Grouping and MUX2, SBoxes and L 
Function and finally between the L Function and P Function 
as the Fig. 1 shows (discontinuous lines). The registers are 
single edge triggered and the data are transferred between 

two successive registers in one clock period. So the latency 
of the circuit is increased up to 218 clock cycles.  

In the second pipeline scheme (JH_gating), the same 
places for the pipeline registers are used and each register is 
implemented by means of the Clock Enable.  

Finally, in the third pipeline scheme (JH_negative) an 
inner pipeline with negative edge triggered register (Flip-
Flops) is used. The negative edge triggered register replaces 
the usual pipeline registers (see Fig. 1). The usage of this 
technique leads to two very important results. Firstly, the 
glitches are not propagated to logic circuit and secondly the 
execution time of algorithm is reduced compared with the 
JH_positive scheme. So, 148 clock cycles are needed for the 
algorithm execution.   

With regard to embedded RAM blocks (JH_RAM 
technique) there are three places in JH which could easily be 
used; firstly for the implementation of SBoxes, secondly for 
the implementation of the constant values are used in process 
of substation and thirdly for the implementation of the 
initialization vector. There are 256 SBoxes (S0, S1) in total, 
so 256 embedded RAM blocks with 32 positions of 4-bit 
each are used. Also, there are 37 constants values, which 
results 37 embedded RAM blocks with 64 positions of 4-bit 

419



each position. Finally, in the initialization vector there are 4 
vectors of 1024-bit, so 4 embedded RAM blocks with 256 
positions of 4-bit are used.  

The same techniques are used in order to reduce the power 
dissipation of the Fugue hash function. Similar to JH, in the 
Fugue_positive four pipeline registers were used as the Fig. 
3a shows (discontinuous lines). The registers are single edge 
triggered and the data are transferred between two successive 
registers in one clock period. So the latency of the circuit is 
increased up to 103 clock cycles.  

In the second pipeline scheme (Fugue_gating), the same 
places for the pipeline registers are used and each register is 
implemented by means of the Clock Enable.   

Finally, in the third pipeline scheme (Fugue_negative) an 
inner pipeline with negative edge triggered register (Flip-
Flops) is used. The negative edge triggered register inserted 
inside the SMIX component as it is illustrated in Fig. 2a. 

V. EXPERIMENTAL RESULTS

The proposed implementations were captured by using 
VHDL. The VHDL code has been synthesized using 
XILINX ISE 10.1 tool and the target FPGA device was 
XC5VLX330-2FF1760. The total power dissipation is 
measured using XILINX XPOWER analyzer tool [12]. The 
synthesis results, performance analysis and power dissipation 
for the JH and Fugue architectures described in section 3 
(denoted as JH_conventional and Fugue_conventional) are 
depicted in Table I. Comparisons to previously published JH 
and Fugue implementations are also given. The proposed 
implementations (JH_conventional and Fugue_conventional) 
achieve a throughput equal to 1.3 Gbps for a frequency of 
201.2 MHz and 514 Mbps for a frequency of 103.2 MHz 
respectively. 

TABLE I. RESULTS AND COMPARISONS

Archi-
tecture 

Techno-logy #  
FFs 

# 
Slice  

Freq 
(MHz) 

Bit rate 
(Mbps) 

JH_ 
conv 

XC5VLX330
-2FF1760 

 2251 201.2 1328 

[13] 0.18 μm 58832 GE* 380.22 4.992 
[14] 0.18 μm 51212 259.54 3.407 
[15] Virtex 5 - 1108 278.09 3955 
[16] XC5VLX330

-2FF1738 
- 1763 144.11 1941 

Fugue_
conv 

XC5VLX330
-2FF1760 

969 1394 103,2 514 

[13] 0.18 μm 46257 GE* 255.75 4.092 
[14] 0.18 μm 48401 GE* 161.19 2.579 
[15] Virtex 5 - 956 98.47 3151
[16] XC5VLX330

-2FF1738 
- 2046 200 914 

* The GEs (Gate Equivalent) is the area metric for ASIC 
designs and is equal to the area of two-input NAND gate. 

The JH implementations in [13-14] use 0.18 μm library for 
their implementations and achieve throughput up to 4.9 and 
3.4 Gbps respectively. In [15] a Virtex 5 FPGA 
implementation is presented and achieves throughput up to 

3.9 Gbps for a frequency of 278.09 MHz. Finally, in [16] a 
Virtex XC5VLX330-2FF1738 FPGA is used and achieves 
similar time and area performance to the proposed one. For 
all previous implementations [13-16] there are no 
estimations for power dissipation.  

Similarly, the Fugue implementations in [13-14] use 0.18 
μm library for their implementations and achieve throughput 
up to 4 and 2.6 Gbps respectively. In [15] a Virtex 5 FPGA 
implementation is presented and achieves throughput up to 
3.1 Gbps for a frequency of 98.47 MHz. Finally, in [16] a 
Virtex XC5VLX330-2FF1738 FPGA is used and achieves 
similar time and area performance to the proposed one. Also, 
for all previous Fugue implementations [13-16] there are no 
estimations for power dissipation.  

In Table II the estimations in term of power consumption 
are given. Each estimation corresponds to one of the power 
reduction techniques described in section 4. The estimations 
are produced with XPOWER tool. The power dissipation for 
the conventional architectures (described in section 3) is also 
given in Table II. 

TABLE II. POWER ESTIMATIONS

Power Reduction 
Technique 

Architecture Power (mW) 

Positive Pipeline JH_positive 10726 
Pipeline and Gating 

Clock 
JH_gating 7685 

Negative Pipeline JH_negative 10672 
RAM Blocks JH_RAM 12262 
Conventional JH_conventional 11451 

Positive Pipeline Fugue_positive 4372 
Pipeline and Gating 

Clock 
Fugue_gating 4037 

Negative Pipeline Fugue_negative 4240
RAM Blocks Fugue _RAM 3854 
Conventional Fugue _conventional 4446 

It can be seen that the pipeline technique with positive 
edge registers achieves an improvement in terms of power 
consumption up to 6.3 % for JH function and 1.7 % for 
Fugue function. Also, the implementation with the positive 
edge pipeline technique with Clock Enable consumes less 
power by 33 % for JH and 9.2 % for Fugue. In addition, by 
using the pipeline technique with negative edge registers bit 
better performance is achieved in terms of power, i.e. power 
consumption is reduced down to 6,8 % and 4.6 % 
respectively. Finally, the results for the implementations with 
the use of RAM blocks are bit strange. While, in the Fugue 
implementation achieves a power reduction up to 13.3 % in 
the JH implementation had contradictious results. The power 
dissipation increased by a factor equal to 1.07. This is a 
physical result because this implementation uses many RAM 
blocks for both SBoxes and initialization vector which 
results a higher level of power.  

420



VI. CONCLUSIONS

Efficient techniques for reducing the power consumption 
of the JH and Fugue hash functions FPGA implementations 
have been presented in this paper. Different versions of the 
pipeline technique and the use of RAM blocks were 
introduced. With these techniques a power reduction 
between 6.3% and 33 % was achieved for JH function and 
similar a power reduction between 1.7% and 13.3 % was 
achieved for Fugue compared to existing implementations.  

REFERENCES

[1] S. Bakhtiari, R. Safavi-Naini, J. Pieprzyk, “Cryptographic Hash 
Functions: A Survey”, Technical Report 95-09, Department of 
Computer Science, University of Wollongong, July 1995. 

[2] SHA-1 Standard, National Institute of Standards and Technology 
(NIST), Secure Hash Standard, FIPS PUB 180-1, 1995, available on 
line at www.itl.nist.gov/fipspubs/ fip180-1.htm 

 [3] Secure Hash Standard (SHS), National Institute of Standards and 
Technology (NIST), FIPS PUB 180-3, 2008, available on line at 
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf  

[4] X. Wang, Y. Lisa Yin, and H. Yu, “Finding Collisions in the Full SHA-
1,” Proc. 25th Annual Int. Cryptology Conference- CRYPTO 2005, 
Santa Barbara, California, USA, August 14-18, 2005, LNCS 3621, 
2005.  

[5] National Institute of Standard and Technology (NIST), “Cryptographic 
hash algorithm competition”, 2007, available on line at 
http://www.nist.gov/itl/csd/ct/hash_competition.cfm  

[6] Hongjun Wu, “The Hash Function JH”, The First SHA-3 Candidate 
Conference, 2009, available on line at 
http://ehash.iaik.tugraz.at/wiki/JH 

[7[ S. Halevi, W. E. Hall and C. S. Jutla, “The Hash Function Fugue”, The 
First SHA-3 Candidate Conference, 2009, available on line at 
http://ehash.iaik.tugraz.at/wiki/Fugue 

 [8]  G. Sutter, E. Boemo, “Experiments in Low Power Design”, Special 
Issue on Configurable Logic of Latin American Applied Research 
(LAAR), pp 99-104, Vol. 37, No. 1, Jan. 2007.  

[9] Y. Zhang, J. Roivainen, and A. Mammela. “Clock-Gating in FPGAs: 
A Novel and Comparative Evaluation”, EUROMICRO Conf. on 
Digital System Design: Architectures, Methods and Tools, pages 
584–590, 2006.  

[10] T. Czajkowski and S. D. Brown, "Using Negative Edge Triggered 
FFs to Reduce Glitching Power in FPGA Circuits", 44th Design 
Automation Conf., San Diego, California, June 4-8, 2007, pp. 324-
329.  

[11] I. Kuon and J. Rose, "Measuring the Gap Between FPGAs and 
ASICs", ACM Symposium on FPGAs, Feb. 2006, pp. 21-30.  

[12] XILINX XPOWER analyzer tool, available on line at 
http://www.xilinx.com/products/design_tools/logic_design/verificatio
n/xpower_an.htm  

[13] S. Tillich, M. Feldhofer, M. Kirschbaum, T. Plos, J. – Marc Schmidt, 
and A. Szekely, “High-Speed Hardware Implementations of 
BLAKE, Blue Midnight Wish, CubeHash, ECHO, Fugue, Grostl, 
Hamsi, JH, Keccak, Luffa, Shabal, SHAvite-3, SIMD, and Skein”, 
Cryptology ePrint Archive, Report 2009/510, 2009. 
http://eprint.iacr.org/ 

[14] S. Tillich, M. Feldhofer, M. Kirschbaum, T. Plos, J.-Marc Schmidt, 
A. Szekely, “Uniform Evaluation of Hardware Implementations of 
the Round-Two SHA-3 Candidates”, The Second SHA-3 Candidate 
Conference, University of California, Santa Barbara, August 23-24, 
2010.  

[15] K. Gaj, E. Homsirikamol, and M. Rogawski, “Comprehensive 
Comparison of Hardware Performance of Fourteen Round 2 SHA-3 
Candidates with 512-bit Outputs Using Field Programmable Gate 
Arrays”, The Second SHA-3 Candidate Conference, University of 
California, Santa Barbara, August 23-24, 2010. 

[16] B. Baldwin, N. Hanley, M. Hamilton, L. Lu, A. Byrne, M. O’Neill 
and W. P. Marnane, “FPGA Implementations of the Round Two 
SHA-3 Candidates”, 20th International Conference on Field 
Programmable Logic and Applications (FPL), Milano, ITALY, Aug. 
31st - Sep. 2nd, 2010. 

421


