
On the Hardware Implementation of the
MUGI Pseudorandom Number Generator

Paris Kitsos and Athanassios N. Skodras
Digital Systems and Media Computing Laboratory

School of Science & Technology
Hellenic Open University

Patras, Greece
e-mail: pkitsos@ieee.org

Abstract—A high-speed hardware implementation of the
MUGI pseudorandom number generator is presented in this
paper. The MUGI generator is part of the ISO/IEC 18033-4:
2005 standard and it is expected to be used in many
applications. The design has been coded in VHDL and FPGA
devices have been used for its hardware implementation. A
maximum throughput equal to 7 Gbps is achieved for a clock
frequency of 110 MHz. As no other MUGI implementations
do exist, the comparison with previous keystream generator
implementations such as RC4, E0, A5/1, are given. These
comparisons prove that the MUGI implementation is much
faster compared to these implementations.

I. INTRODUCTION
Wireless communications are expected to play a crucial

role in the realization of the grand vision of 4G
communications: the always best-connected scenario for
anybody, to anything from anywhere at anytime. Wireless
communications offer to the end-user the means for easy
access to a global information and communications
infrastructure. At the same time, wireless communications
facilitate seamless connectivity amongst a host of
computing, communications and sensing devices that
collaborate to form a supporting ambient and pervasive
computing environment.

With the arrival of the information age, cryptography
has grown to an essential tool for a wide segment of
industry and commerce. It can be used to protect all forms
of electronic communications such as fax, e-mail, cellular
phones and home banking systems. Cryptography can
replace the sealed envelope of a paper-oriented system and
ensure privacy on electronic media. More important is its
ability to prevent forgery of electronic documents, and to
supply mutual authentication of senders and recipients of
these documents. Without such tools, wide-scale electronic
commerce using the Internet would have been impossible.

Private-key cryptographic algorithms can be classified
into block and stream ciphers. Block ciphers permute N-bit
blocks of plaintext data under the influence of the secret key
and generate N-bit blocks of encrypted data. Stream ciphers
typically operate serially by generating a stream of
pseudorandom key bits, the keystream (stream ciphers are
also called pseudorandom number generators).

Fig. 1 shows the general diagram of the cipher process
with stream cipher. The stream cipher takes two parameters,
the secret key, K, and the initialization vector, IV, and
produces the keystream bits, zt. In stream encryption each
plaintext symbol, Pt, is encrypted by applying a group
operation with a keystream symbol, zt, resulting in a
ciphertext symbol ct. In modern cipher the operation is the
simple bitwise XOR.

Fig. 1. The stream cipher process

Decryption takes the substraction of the keystream

symbol from the ciphertext symbol. With the bitwise XOR
this is the same operation.

The most known stream cipher used in many
applications is the RC4 [1] and it was designed by R. Rivest
in 1987. Moreover, there are many attacks and weaknesses
mostly in key scheduling of RC4 [2]-[3]. Many attempts
have taken place in order to propose new stream ciphers to
match the current security levels.

Following this direction the hardware implementation of
the new pseudorandom number generator called Multi Giga
(MUGI) [4] is investigated. MUGI generator has been
adopted by the International Organization for
Standardization (ISO/IEC) 18033-4: 2005 standard [5].

This paper is structured as follows: In Section II the
MUGI cipher is presented. In Section III the proposed
architecture is analysed. In Section IV synthesis results and
comparisons with previous published stream ciphers are
given. Finally, Section V concludes the paper.

II. MUGI PSEUDORANDOM NUMBER GENERATOR
MUGI is a pseudorandom number generator (PRNG)

used as a stream cipher. The design aims to be suitable for

mailto:pkitsos@ieee.org

both software and hardware implementations. MUGI has
two independent parameters as input. The first one is a 128-
bit secret key while the second one is a 128-bit initial,
public, vector. MUGI generates a 64-bit length random bit
string in each round.

Since the MUGI is a PANAMA-like [6] stream cipher it
consists of four main operational modules. As the Fig. 2
shows, similar to PANAMA, the Internal State is divided
into two parts, State a and Buffer b.

Fig. 2. A PANAMA-like stream cipher

The Update Function is divided in proportion to the

internal state. Note that each update function uses another
internal state as a parameter. We denote the update function
of State a and Buffer b as ρ and λ function respectively. The
output filter f abstracts some bits of State a for each round.

III. PROPOSED ARCHITECTURE
The objective of the research described here is to

ascertain how fast the MUGI pseudorandom number

generator can operate on a synchronous hardware device. As
such, the architecture which has been developed is
implemented using the XILINX Virtex-E and Virtex-II [7].
The architecture that performs the MUGI pseudorandom
number generator is shown in Fig. 3. As this figure shows
the main parts of the proposed architecture are the State a,
the Buffer b and the functions ρ and λ. In addition, one 128-
bit register is used for latching of the secret key and
initialization vector. Also, the K/I init component is used for
key and initialization vector transformations [4] before the
algorithm initialization phase starts. The Auxiliary Buffer1
holds the Buffer b data while the Auxiliary Buffer2 holds the
State a data during the initialization phase. Finally, there are
a 3x192 multiplexer (MUX) and two XOR gates, 128-bit
and 64-bit respectively, accomplishing the generator
architecture.

The initialization phase of MUGI is divided into 3 steps.
Firstly Buffer b with a secret key, K, is initialized. Secondly
the initialization of the State a with the initial vector, I takes
place. Finally, the whole internal state is mixed. So, when
the key is transformed is fed by the State a through the IN2
multiplexer input. Then, the a, iterates only the function ρ
and puts a part of each a(t) into Buffer b as follows,

0
1

15))0,((ab i
i

+
− = ρ . In the previous equation ιρ means the i-

th iteration of ρ and)0,(aρ means the input from Buffer b
is zero. In other words, the data stored into Buffer b are not
used in this step. The Auxiliary Buffer1 is responsible for
this. In addition the output data of the State a are never used
in the first step of the initialization phase.

Fig. 3. MUGI generator architecture

The Auxiliary Buffer2 is responsible for this. In the second
step the mixed State a with value)0,()(0

16 aKa ρ= and the
initial vector, I, are required. If the I is added to State a
through the IN1 multiplexer input, State a is mixed again by
16 rounds iteration of function ρ. So, the mixed State a is
represented as)0),,((16 IKaρ .

Finally, the last initialization phase step is a 16 rounds
iteration of the whole update function Update,

))(),0),,(((1616 KbIKaUpdatea ρ= (1)

where the notation)(Kb in the above equation denotes that
Buffer b is initialized by the secret key K.

For security purposes, the algorithm output bits should
not be available to the users during the initialization process.
So, a 64-bit register is located at the generator output that
does not latch its input bits during the initialization process.

After the initialization, the 64-bit register latches the
generated bits and MUGI generates a 64-bit keystream. If
we denote the output at round t as Out(t), then the output is
given as,

)(
2)(tatOut = (2)

In other words MUGI outputs the lower 64-bit of State a
at the beginning of the round process.

The State a and Buffer b are 192-bit and 1024-bit
registers, respectively. Τhe update function of State a is the
function ρ. It is a kind of target heavy Feistel structure with
two F-functions and uses Buffer b as a parameter. The VLSI
implementation of the function ρ is depicted in Fig. 4.

Fig. 4. The ρ function VLSI implementation

In addition, the hardware architecture of the F-function

is depicted in Fig. 5. The bytewise substitution S-box is the
same as the one in AES [8], while the linear transformation
is the combination of a 4 x 4 matrix and a bytewise
shuffling. MUGI uses MDS matrix which is the component
of AES [8].

In addition, the function λ is the update function of
Buffer b and uses a part of State a as a parameter. The
mathematical background of function λ can be found in [4].
The hardware implementation consists of simple XOR
operations and bit-shifting. Also, the values of the C0, C1
and C2 constants are defined in [4].

Finally, the Control Unit is responsible for the correct
operation of the whole algorithm.

Fig. 5. The F-function hardware architecture

IV. EXPERIMENTAL RESULTS AND PERFORMANCE
EVALUATION

The proposed implementation was captured in VHDL
using structural description logic. The implementation was
simulated for correct operation using the test vectors
provided by the specifications [4]. The VHDL code was
synthesized for Xilinx (Virtex-E and Virtex-II) FPGA
devices [7]. The implementation then was simulated again
for the verification of the correct functionality in real time
operating conditions.

The required cipher S-boxes have been implemented by
means of LUTs, increasing the algorithm time performance.
The synthesis results for both Virtex-E and Virtex-II FPGAs
are shown in Table 1.

TABLE 1
FPGA SYNTHESIS RESULTS

FPGA
Devices V200EBG352 2V500FG456

Resources Used Utiliz. Used Utiliz.

I/Os 196 76 % 196 75 %

FGs 4183 89 % 3927 64 %

CLB Slices 2092 89 % 1964 64 %

DFFs 2437 44 % 2437 35 %

F (MHz) 96 110

Throughput
(Gbps) 6.14 7

The throughput is estimated after the initialization phase.
Performance comparisons between the proposed system and
previous published architectures are shown in Table 2.
According to our knowledge, no other implementation of
the MUGI pseudorandom number generator has been
previously published. So, comparisons with others similar
generators [9]-[14] are given in order to have a fair and
detailed comparison of the proposed system.

TABLE 2
PERFORMANCE COMPARISONS

Stream
Cipher FPGA Device F (MHz) Throughput

(Mbps)
A5/1 [9] 2V250FG25 188.3 188.3

A5/1 [10] nn 3000 3000

HELIX [9] 2V250FG25 32.0 1024.0

W7 [9] 2V250FG25 96.0 768.0

RC4 [11] 2V250FG256 64 22

E0 [12] 2V250FG25 189 189

WG [13] ASIC 1000 125

Achterbahn
[14] ASIC 1000 8000

MUGI#1 V200EBG352 96 6140

MUGI#2 2V500FG456 110 7000

MUGI#1 symbolizes the implementation on VIRTEX
V200EBG352 FPGA, while MUGI#2 symbolizes the
implementation on 2V500FG456 FPGA. The A5/1 is a
synchronous single-bit stream cipher. As the above table
shows the proposed implementations outperform the A5/1
implementations in [9], [10]. The HELIX implementation
[9] uses a 256-bit key and a 128-bit initialization vector and
outputs an 8-bit keystream. In addition, the W7 [9] is a
single-bit cipher that supports a key of 128-bit length. The
well known RC4 [11] is a variable key-size stream cipher
which produces an 8-bit keystream. Also, in [12] the
implementation of the stream cipher, E0, which is used in
Bluetooth is presented. In [13] and [14] the straightforward
implementations of two new stream ciphers, WG and
Achterbahn respectively, are presented. These ciphers have
been submitted and are under consideration from the
ECRYPT (European Network of Excellence for Cryptology)
project [15]. The WG is a single-bit synchronous cipher
while the Achterbahn is a synchronous stream cipher which
has parallel implementation ability and produces a
keystream with lengths equal to 1-, 2-, 4- and 8-bit per clock
cycle. With this technique the time performance is
increased. In our comparisons (Table 2) the faster case was
selected. As Table 2 shows, the proposed MUGI
implementations outperform all of the previous
implementations in terms of time performance. Only the
Achterbahn cipher has better performance compared to ours.
However some Achterbahn security weaknesses do exist
[16] that do not allow an effective substitution of MUGI by
Achterbahn.

V. CONCLUSIONS
The MUGI pseudorandom number generator is the most

recent generator that has been standardized. MUGI has
undergone much cryptanalysis not only for all the standard
attacks on stream ciphers but also using differential and
linear cryptanalysis. At this time, none of these attacks have
been proved successful.

A MUGI high-speed hardware architecture is described
in this paper and implemented by means of FPGA devices.
Experimental results prove that the MUGI implementation
is a flexible solution in applications with very high-speed
specification demands. The implementation on FPGAs
achieves a throughput of 6.14 Gbps or 7 Gbps, depending
on the FPGA devices used..

REFERENCES
[1] B. Schneier, “Applied Cryptography - Protocols, Algorithms and

Source Code in C”, Second Edition, John Wiley and Sons, New
York, 1996.

[2] S. Fluhrer, I. Mantin, and A. Shamir, “Weaknesses in the Key
Scheduling Algorithm of RC4”, In Proc. of 8th Annual Workshop on
Selected Areas in Cryptography (SAC 2001), Toronto, Canada,
2001.

[3] P. D. Kundarewich, S. J. E. Wilton, A. J Hu, “`A CPLD-based RC4
Cracking System'”, In Proc. of 1999 Canadian Conference on
Electrical and Computer Engineering , May 1999.

[4] D. Watanabe, S. Furuya, H. Yoshida, and K. Takaragi, “MUGI
Pseudorandom Number Generator”, Specification, 2001, on line
available at http://www.sdl.hitachi.co.jp/crypto/mugi/index-e.html

[5] International Organization for Standardization, “ISO/IEC 18033-
4:2005: Information Technology – Security Techniques – Encryption
Algorithms – Part 4: Stream ciphers”, 2005.

[6] J. Daemen, and C. Clapp, “Fast Hashing and Stream Encryption with
PANAMA”, In Proc. of Fast Software Encryption: 5th International
Workshop, FSE'98, Paris, France, March 1998.

[7] Xilinx Inc., San Jose, California, 2005, www.xilinx.com
[8] J. Daemen and V. Rijmen, “AES proposal: rijndael,”, AES algorithm

submission, September 3, 1999, on line available at
http://www.nist.gov/aes/.

[9] M. D. Galanis, P. Kitsos, G. Kostopoulos, N. Sklavos, and C. E.
Goutis, “Comparison of the Hardware Implementation of Stream
Ciphers”, The International Arab Journal of Information Technology
(IAJIT), Colleges of Computer and Information Society, Vol. 2, No.
4, October 2005, pp. 267-274.

[10] L. Batina, J. Lano, N. Mentens, S.B. Ors, B. Preneel, I.
Verbauwhede, “Energy, Performance, Area versus Security Trade-
offs for Stream Ciphers”, Workshop Records of SASCS – The State
of the Art of Stream Ciphers (Brugge, Belgium, 2004), pp. 302–310.
Available at http://www.isg.rhul.ac.uk/research/projects/excrypt/stvl
/sasc-record.zip

[11] P. Kitsos, G. Kostopoulos, N. Sklavos and O. Koufopavlou,
“Hardware Implementation of the RC4 stream Cipher”, In Proc. of
46th IEEE Midwest Symposium on Circuits & Systems '03,
December 27-30, Cairo, Egypt, 2003.

[12] P. Kitsos, N. Sklavos, K. Papadomanolakis and O. Koufopavlou,
“Hardware Implementation of Bluetooth Security”, IEEE Pervasive
Computing, vol. 2, no.1, pp. 21-29, January-March 2003.

[13] D. Gligoroski, S. Markovski, L. Kocarev and M. Gusev, “Edon80 -
Hardware Synchronous Stream Cipher”, Symmetric Key Encryption
Workshop (SKEW), Scandinavian Congress Center, Aarhus,
Denmark, 26-27 May 2005.

[14] B. Gammel, R. GÄottfert, and O. Knifer, The Achterbahn Stream
Cipher”, eSTREAM, ECRYPT Stream Cipher Project, Report
2005/002, 2005. http://www.ecrypt.eu.org/stream.

[15] ENCRYPT - European Network of Excellence in Cryptology, “Call
for Stream Cipher Primitives”, Scandinavian Congress Center,
Aarhus, Denmark, 26-27 May 2005, http://www.ecrypt.eu.org
/stream/.

[16] T. Johansson, W. Meier and F. Muller, “Cryptanalysis of
Achterbahn”, eSTREAM, ECRYPT Stream Cipher Project, Report
2005/002, 2005. http://www.ecrypt.eu.org/stream/papersdir/064.pdf.

http://www.sdl.hitachi.co.jp/crypto/mugi/index-e.html
http://www.xilinx.com
http://www.nist.gov/aes/
http://www.isg.rhul.ac.uk/research/projects/excrypt/stvl
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org
http://www.ecrypt.eu.org/stream/papersdir/064.pdf

