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ABSTRACT 

The Discrete Pascal Transform (DPT) has been proved remarkably useful for edge detection, filter design, discrete-time 
signal interpolation and data hiding. In the present work a new blind fragile data hiding technique for secretly embedding 
messages into color images, is proposed. The embedding procedure is based on dividing each color image component 
into even-sized blocks. Information embedding is determined by monitoring the lower-right corner of the DPT 
coefficient matrix. This particular coefficient suffers the highest change for small pixel modifications. The embedding 
affects the coefficient’s sign. In case that the sign is not the desired one, i.e. negative for a message bit value of ‘0’ and 
positive for a message bit value of ‘1’, it is changed by repeatedly adding to the block or subtracting from the block the 
identity matrix. This process is based on the DPT properties and on the sensitivity of the lower-right coefficient in even 
the smallest pixel changes. The embedding algorithm takes care of the underflows or overflows that may occur during 
the consecutive additions or subtractions. The method is evaluated in terms of capacity and image distortion. 
Experiments are conducted using different images and block sizes namely 2x2 / 4x4 / 8x8 / 16x16, and the overall 
performance of the scheme is quantified. Block size greatly affects capacity and stego-image quality. Comparisons with 
existing methods prove the superiority of the proposed method.  
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1. INTRODUCTION  

During the last decade, the number of works on digital media watermarking, has been exponentially increased1. The 
driving force behind this, is the urgent need for copyright protection since the amounts involved in media industry are 
really huge. Embedding copyright information and other kind of metadata into the medium, in an invisible/inaudible way 
has become a reality, even in affordable consumer electronics devices2. Data hiding is closely related to watermarking 
but in principle it is the message to be conveyed, which is of prime importance and not the carrier itself (as it is in 
watermarking). Such applications include secret communications between agencies, industrial espionage, e-healthcare 
etc3.  

Robustness4 is a key characteristic of watermarking for copyright protection but not for other data hiding methods for 
which capacity is usually more important. If the embedded message cannot be retrieved after simple image processing 
operations, then the scheme is called fragile5,6,7. Such methods are commonly used in tamper proofing and are mainly 
operating in the spatial domain. LSB8 and histogram9 manipulation methods are example categories of such techniques. 
A small level of robustness may be required in the case that the image may sustain some light, non malicious processing 
(e.g. moderate lossy compression).  

In this communication the use of Discrete Pascal Transform (DPT) is proposed in order to achieve data hiding. Aburdene 
and Goodman10 are the first who referred to watermarking as an application area of DPT. Kostopoulos et al11 have 
suggested an interesting watermarking scheme using Pascal triangles. Wong et al12 proposed an effective watermarking 
method in Pascal transformed domain used for medical image authentication by altering the high frequency components 
according to a code book. In this paper a new data hiding technique is proposed, which uses DPT to invisibly embed 
secret data into color images. The proposed technique is blind, fragile, and can be used for secret communications, 
tamper proofing and authentication13.  

Two properties of DPT are used in order to form the proposed data hiding method. Firstly, the DPT is highly sensitive to 
noise and even the smallest noise can seriously distort the values of the transform coefficients of the signal. If a single 
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change of signal y[n], n=0,1,2,...,N-1 occurs at instant m, then all DPT coefficients Y[k], k=0,1,2,...,N-1 change for  
m ≤ k ≤ N-1. Secondly, coefficients in the Pascal transform represent weighted differences of neighbouring data values. 
That is any sharp changes in the pixel values produce large DPT coefficients. Furthermore the forward and inverse DPT 
transforms are computationally equivalent10 and can be efficiently computed14. 

The embedding procedure uses the lower-right corner of the DPT coefficient matrix of even sized blocks of pixels. This 
is because this particular coefficient rapidly changes for even small pixel modifications. The coefficient’s sign can 
determine whether the bit embedded into the block is ‘0’ or ‘1’. If the coefficient’s sign doesn’t match the message bit, 
then the identity matrix is added or subtracted in order to change it. Overflows or underflows are taken into account 
during the embedding procedure.  

The rest of the paper is organized as follows. The 2D Discrete Pascal Transform is presented in section 2. Embedding 
and extracting algorithms are described in sections 3 and 4, respectively. In section 5 experimental results are given and 
finally in section 6 conclusions are drawn.  

2. DISCRETE PASCAL TRANSFORM 
The discrete Pascal transform of a size MxM 2D signal x is defined as 

  T
M M=X P x P , (1) 

and PT is the transpose of P. The Pascal transform matrix elements are equal to 
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Pascal transform matrix is involuntary, i.e. it is its own inverse. Thus the inverse DPT is calculated by multiplying again 
with the Pascal transform matrix as in (4): 

 T
M M=x P X P . (4) 

The 2D computation is equivalent to performing a one dimensional transform on the rows of the matrix x, followed by a 
one dimensional transform on the columns of the resulting coefficient matrix.  

In Aburdene10 et al it is shown that any sharp change in the pixel values of an image produces large coefficients in the 
transform matrix. For a constant-value image, all DPT coefficients are equal to 0 except for the X(1,1) coefficient, which 
equals to the pixel value. When a variation occurs, the DPT coefficients change considerably after the variation location. 
In the following we study how DPT coefficients are affected when the identity matrix or exchange matrix (i.e. row– or 
column–reversed version of the identity matrix) is added to 2D data.  

For simplicity let us denote matrix x by xM. Then the 2x2 block data matrix x2 is equal to: 

 11 12
2

21 22

x x
x x
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

x , (5) 

and its DPT X2 calculated according to (1) equals to: 
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Let I2 be the 2x2 identity matrix. If x2’ is the 2x2 result of the addition of x2 and I2, then the DPT of x2’ is denoted as X2’ 
and is given in (8). 
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We observe that the addition of the identity matrix increases all DPT coefficients by one, except for coefficient X2’(2,2) 

which is increased by 2. In fact the symmetric Pascal matrix 
1 1
1 2
⎡ ⎤
⎢ ⎥
⎣ ⎦

 that is added to X2, is the DPT of the identity 

matrix. 

Let x3 be a 3x3 data block (9) and x3’ the result of x3 +I3. The DPT of x3’ results in X3’ (10), where X3 is in fact the DPT 
of x3 and the 3x3 symmetric Pascal matrix is the DPT of the 3x3 identity matrix I3.  
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Similarly, for the 4x4 case it is proved that the DPT of the 4x4 2D data block x4, augmented by the I4 matrix, equals to 
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where X4 is the DPT of the original 4x4 2D data block x4. Thus we see that the DPT of any odd or even sized data block 
increased by one along the diagonal, i.e. adding the identity matrix, results to the addition of the individual DPT’s (eq. 
12). 

( ) ( ) ( )M M M MDPT DPT DPT+ = +x I x I , M ∈Z   (12) 

where DPT(IM) equals to the symmetric Pascal matrix of size MxM. That is to say that the DPT of a MxM data block 
increased by the MxM identity matrix is equal to the sum of the DPT of the block and the MxM symmetric Pascal matrix. 
This in fact is a result of the linearity property of the DPT. 
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Now let x2” be the 2x2 block resulted from the addition of the 2x2 x2 data and J2, where J2 is the 2x2 anti-diagonal 

identity or exchange matrix 
0 1
1 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

. X2” is the DPT of x2” and equals to: 
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It is obvious that the X2”(1,1) coefficient remains unchanged. The rest of the coefficients are decreased by one except for 
X2(2,2), which is decreased by 2. 

Similarly, the DPT of a 4x4 data block in which the 4x4 anti-diagonal identity matrix J4 is added, equals to: 
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In general  

( ) ( ) ( )M M M MDPT DPT DPT+ = +x J x J , for M=2k, k ∈Z   (15) 

DPT(JM) is an even sized triangular matrix, whose elements monotonically decrease towards the (M,M) element.  

When the odd sized anti-diagonal identity matrix is added to an odd sized matrix the DPT coefficients are increased, as 
for the 3x3 block below 
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where X3” is the DPT of the 3x3 data block x3” and X3 is the DPT of the 3x3 data block prior to addition of the exchange 
matrix. In general 

( ) ( ) ( )M M M MDPT DPT DPT+ = +x J x J , for M=2k+1, k ∈Z  (18) 

DPT(JM) is a triangular odd sized matrix whose elements increase towards the (M,M) element.  

It has been experimentally observed that the XM(M,M) coefficient of natural photos has a zero mean narrow distribution, 
almost symmetric with a considerable tail. The coefficients are positive, negative or zero. It is possible to alter the sign of 
the coefficients by just adding the identity or the anti-diagonal identity MxM matrix to the MxM pixel block. This 
property of the DPT can be exploited in order to invisibly embed data into a block of pixels. The proposed embedding 
approach is actually based on this particular property. 

3. THE PROPOSED EMBEDDING ALGORITHM 

In DPT, the alteration of even a pixel value affects the subset of coefficients, belonging in the rectangular region defined 
by the particular pixel location and the lower-right corner of the coefficient matrix10. The change is very severe. This 
property is used in order to embed data into an image, because even small pixel changes can remarkably influence Pascal  

Proc. of SPIE Vol. 7723  77230L-4



OLU
TJJG

Couibr

 

Figure 1. Embedding algorithm 

Table 1. Embedding algorithm. 

Embedding algorithm 
Procedure embedding (image, message, M) 
1. Capacity←⎣N/M⎦x⎣N/M⎦ 
2. for i←1 to L do 
3. begin 
4.  xMxM(i)←imageMxM(i) 
5.   X←DPT(xMxM(i)) 
6.   if message(i)=0 then   {X(M,M) must be negative} 
7.    while X(M,M)≥0 
8.     xMxM(i)←xMxM(i)+JMxM 
9.     X←DPT(xMxM(i)) 
10.    endwhile 
11.   else     {X(M,M) must be positive} 
12.    while X(M,M)<0 
13.     xMxM(i)←xMxM(i)+IMxM 
14.    X←DPT(xMxM(i)) 
15.   endwhile 
16.   endif 
17.  sMxM(i) ←xMxM(i)  {form the stego image} 
18.  endbegin 

Proc. of SPIE Vol. 7723  77230L-5



LOLW P(

TJJ??1

coefficients. The proposed embedding procedure deals with XM(M,M) coefficient, for the even sized blocks. Odd sized 
blocks are excluded for reasons of overflow manipulation. 

Let bi be the message bit, with i=1,2,…,L, where L is the payload. The payload is smaller or equal to the capacity in all 
cases below. For images of size NxN, the capacity equals to ⎣N/M⎦x⎣N/M⎦, as one bit of information is hidden in each 
MxM pixel block. The message and the original image are the inputs to the algorithm. The output is the stego-image s, 
which contains the secret message and is not visible to a human observer. The embedding algorithm can be applied to 
each of the RGB components to increase the capacity. Other color spaces, such as YUV, could also be used. The 
flowchart of the embedding procedure is shown in Fig. 1 and its pseudocode is given in Table 1. 

In some cases the operations in lines 8 and 13 may result in overflow. To avoid such errors, additional control is 
needed. When overflow occurs and the condition in line 7 is satisfied, then line 8 is modified as follows: 

xMxM(i)←xMxM(i)-IMxM 
When overflow occurs and the condition in line 12 is satisfied, then line 13 is modified as below: 

xMxM(i)←xMxM(i)-JMxM 

It is important to mention that this modification cannot be applied to odd sized blocks because of eq. (18). Consequently 
overflow in odd sized blocks cannot be avoided, thus the embedding algorithm eventually is not used for odd sized 
blocks. Additionally underflow, which may occur by the subtraction of the anti-diagonal identity matrix, should be taken 
into account (see Section 5). 

4. THE EXTRACTION ALGORITHM 
The hidden message may be retrieved by collecting the embedding bit of each MxM block of the s stego image. The 
extraction doesn’t need any information about the original image, thus the data hiding scheme is characterized as blind. 
The procedure simply reads the S(MxM) DPT coefficient of the MxM stego-block in order to decide a ‘0’ or ‘1’ for the 
hidden message. Figure 2 depicts the extraction algorithm and its pseudocode is given in Table 2.  

 
Figure 2. Extraction algorithm 
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Table 2. Extraction algorithm. 

Extraction Algorithm 

Procedure extraction (s, M) 
1.  Capacity←⎣N/M⎦x⎣N/M⎦ 
2. for i←1 to L do  
3. begin 
4.  S←DPT(sMxM(i)) 
5.  if S(M,M)<0 then  
6.   message(i)=0  
7.  else message(i)=1  
8.   endif  
9.  endbegin  
10. endfor 

 

5. EXPERIMENTAL RESULTS 
The performance of the proposed approach was evaluated on a number of color images for different block sizes. In 
Section 2 it was discussed how the addition of the identity or anti-diagonal identity matrix to the pixel values affects 
DPT coefficients. The addition of identity and anti-diagonal identity matrix generates the opposite alterations to the 
(M,M) DPT coefficient. Overflow can be avoided by subtracting the anti-diagonal identity matrix instead of adding the 
identity matrix. This is referred to in section 3 as modified line 8 and 13 of the embedding algorithm. To ensure that no 
additional underflow occurs, the distribution of the (M,M) DPT coefficients was evaluated for 15 color images and for 
different block sizes. Table 3 gives the average of the maximum and minimum values of X(M,M) for different block 
sizes. 

Table 3. Average upper and lower values of X(M,M) for different block sizes. 

M Max X(M,M) Min X(M,M) 
2 135 -149 
4 478 -444 
8 86352 -92816 

16 1740499493 -1296405698 

According to Table 3 the minimum X(2,2) coefficient equals to -149. Let’s take this as the worse case and let the 
embedding bit be ‘1’. According to the embedding procedure, X(2,2) coefficient must be positive, so the identity matrix 
should be added to the pixels of that block, until its X(2,2) DPT coefficient becomes positive. According to eq. (12) each 
time the identity matrix is added to the block, X(2,2) is increased by 2. Therefore the identity matrix must be added 75 
times to produce 75x2=150 increment to the X(2,2) coefficient and therefore to achieve its sign change. Thus the pixels 
belonging to the block’s major diagonal will increase by 75. If overflow happens, i.e. pixels are greater than 151, then 
embedding algorithm’s modified line 13 is employed. According to this, the anti-diagonal identity matrix is subtracted 
until X(2,2) exceeds zero. Each time the subtraction takes place, X(2,2) is increased by 2. That is again 75 times but in 
this case it never underflows because two times 75 doesn’t fall out of the pixel value range.  

In the 4x4 block case, the average maximum X(4,4) equals to 478, and is modified by 20 each time the identity or anti-
diagonal identity is added to the image block. The average change of pixel values equals to 23 (since 23x20=460), which 
is not big enough to cause overflow. Finally in the 8x8 block case, the X(8,8) is changed by 3432 every time the addition 
is made, so 27 times (since 27x3432=92664) are enough to change the X(8,8) coefficient’s sign. Consequently for bigger 
block size, fewer additions are required.  

Since the values of Table 3 correspond to the average of the XM(M,M) extrema over a collection of fifteen natural 
images, it is possible (although rare) for certain blocks in certain images, to exceed these values. In such a case, the 
following three conditions must hold in order for overflow or underflow to happen. First condition is the message’s bit 
doesn’t match with the coefficients sign, therefore algorithm’s line 8 or 13 is applied. Second condition is the pixel value 

Proc. of SPIE Vol. 7723  77230L-7



belonging to the block’s major diagonal to be relatively big or small so that it overflows. Last, when modified line 8 or 
13 is executed, pixels belonging to the minor diagonal overflow. If all three conditions are satisfied, overflowed value is 
set to 0 or 256. In fact none of the pictures tested in this paper satisfy all these three conditions and for all pictures the 
message is correctly extracted. 

Capacity in each color component of size N1xN2 is defined by: 

 1 2/ /C N M x N M= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  (18) 

where M is the block size used in the embedding algorithm. Since the embedding is performed in each color component 
independently, the total capacity is multiplied by three. Thus, the method’s capacity depends only on the image and 
block sizes. Table 4 gives the capacity of the proposed method for different block sizes. 

Table 4. Capacity of the proposed method for color images of different block sizes. 

M Capacity (bpp) 
2 0.75 
4 0.19 
8 0.047 

16 0.012 

The embedding algorithm for a message of size equal to the capacity was applied to various images, leading to the 
experimental results in Table 5, for different block sizes. Perceptual distortion of the proposed scheme was evaluated by 
means of the peak signal to noise ratio (PSNR), which is defined as follows: 
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where xr(m,n), xg(m,n) and xb(m,n) are red, green and blue components of the original image and sr(m,n), sg(m,n) and 
sb(m,n) are the corresponding components of the stego-image. 

The quality of stego-image deteriorates as message is embedded in smaller block sizes. It seems quite obvious that this is 
to happen since the smaller the block size used, the more data is embedded. The proposed scheme is based on DPT for 
deciding how much the diagonal pixels of the block should be changed in order for the required information to be 
hidden. When XM(M,M) coefficient value is high (block containing details), more additions are required and therefore the 
image block is severely distorted. Smooth blocks produce coefficients with lower magnitude and are therefore easily 
changed. 

Three resized versions of Lenna image were used to shape Table 6. The embedding algorithm was applied to each 
version for different block sizes, measuring PSNR and capacity. It is obvious from Tables 5 and 6 how image quality 
drops as capacity increases. It seems that for larger block size there is less image degradation, but this is related to the 
image size and content. For large DPT frequencies more identity matrix additions are needed, so image quality drops. 
Figure 3 depicts the original 256x256 version of Lenna image and the stego–Lenna respectively for hiding data in 
different block sizes. 

It is obvious that the distortion of a single block depends on its size. Indeed, block size selection of the embedding 
algorithm is determined by the total capacity; however, quality is the main priority. In other words when good quality is 
needed, the embedding algorithm must be applied on large block sizes. When capacity is important, small block sizes 
should be used.  

Of great interest is the comparison between the proposed data hiding technique with the Wong et al method12. Wong et al 
proposed a fragile embedding algorithm which modifies the high frequency DPT coefficients according to a code book. 
Their method is applied to grayscale biomedical images for authentication purposes. It is implemented by dividing the 
image into 4x4 non-overlapping blocks and embedding one bit per block. That gives a capacity of 0.0625bpp. 
Implementing our method in grayscale images using 4x4 block sizes gives the same capacity as the Wong et al 
algorithm.  
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Table 5. Image distortion for different color images for embedding a message equal to the image capacity. 

 
Color Image  

PSNR (dB)
M=2 M=4 M=8 M=16 

Lenna(512x512) 39.70 44.67 48.18 51.99 
Babbon (512x512) 30.69 35.93 40.44 44.35 
Peppers (512x512) 37.40 39.62 41.39 44.01 
Tiffany (512x512) 39.37 44.02 47.05 50.65 
F16 (512x512) 41.99 48.99 52.83 56.32 
Sailboat (512x512) 35.28 38.73 42.35 47.17 
Barbara (576x720) 35.45 44.78 50.95 54.75 
Goldhill (576x720) 40.64 44.98 49.80 53.04 
House (256x256) 41.40 47.47 51.74 54.53 
Girl (256x256) 39.20 44.20 47.86 50.62 
Jelly_beans (256x256) 43.36 51.46 55.14 58.79 
Cornfield (480x512) 38.20 47.80 53.45 58.33 
Flower (480x512) 44.32 50.34 54.67 59.14 
Fruits (480x512) 41.84 50.23 56.11 61.69 
Pens (480x512) 42.83 49.46 53.88 58.31 

 

Table 6. PSNR and capacity of four resized versions of Lenna image. 

 
M 

512x512 256x256 128x128 64x64
PSNR  
(dB) 

Capacity 
(bits) 

PSNR  
(dB) 

Capacity 
(bits) 

PSNR  
(dB) 

Capacity 
(bits) 

PSNR  
(dB) 

Capacity 
(bits) 

2 39.07 196609 35.10 49152 31.24 12288 28.66 3072 
4 44.67 49152 39.10 12288 35.65 3072 32.23 768 
8 48.18 12288 43.76 3072 39.04 768 35.99 192 
16 51.99 3072 46.07 768 42.10 192 42.84 48 

  
Original  Stego (M=16, PSNR=46.07 dB) Stego (M=8, PSNR=43.76 dB) 

 
Stego (M=4, PSNR=39.10 dB) Stego (M=2, PSNR=35.10 dB)  

Figure 3. Original and stego – Lenna (256x256) for different block size message embedding. 
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A comparison of the image distortion for the two methods is given in Table 7. It can be noticed that the proposed method 
doesn’t give a uniform PSNR as Wong et al method does. For different images, PSNR can vary from 37.24dB for the 
baboon image up to 53.31dB for the jelly_beans image. This is because every image has different X(4,4) distribution, 
therefore the message demands larger or smaller changes in the pixel values. The overall performance shows that the 
proposed data hiding scheme leads to higher image quality.  

Table 7. PSNR comparison between the proposed and the Wong et al method for V=4. 

 
Grayscale Image 

PSNR (dB)
Wong et al12 Proposed 

Lenna (512x512) 32.18 47.22 
Babοon (512x512) 31.97 37.24 
Peppers(512x512) 31.93 41.80 
Tiffany (512x512) 31.93 45.40 
F16 (512x512) 31.94 50.15 
Sailboat (512x512) 32.08 40.89 
Barbara (576x720) 31.94 45.28 
Goldhill (576x720) 31.97 46.03 
House (256x256) 32.03 50.06 
Girl (256x256) 31.88 47.96 
Jelly_beans(256x256) 32.26 53.31 
Cornfield (480x512) 32.04 49.74 
Flower (480x512) 31.77 52.64 
Fruits (480x512) 31.82 52.85 
Pens (480x512) 31.90 51.70 

Table 8. PSNR comparisons between the proposed method and that of Ni et al. 

 
Image 

 
Capacity 

(bpp) 

Νi et al9 Proposed M=2 Proposed M=4 Proposed M=8 
PSNR (dB) PSNR (dB) PSNR (dB) PSNR (dB) 

Lenna (512x512) 0.0105 53.79 59.38 56.07 52.74 
Babbon (512x512) 0.0105 50.42 40.81 41.36 42.58 
Peppers (512x512) 0.0105 50.08 53.19 53.23 49.36 
Tiffany (512x512) 0.0167 69.89 56.32 52.47 48.69 
F16 (512x512) 0.0317 53.99 55.08 59.43 54.56 
Sailboat (512x512) 0.0140 53.69 48.62 48.63 45.23 
Barbara (576x720) 0.0096 50.45 53.47 56.58 54.24 
Goldhill (576x720) 0.0251 48.19 55.53 59.54 50.03 
House (256x256) 0.0744 55.18 51.85 51.85 54.50 
Girl (256x256) 0.0048 51.09 53.65 52.22 51.37 
Jelly_beans (256x256) 0.0570 56.57 59.55 54.37 56.58 
Cornfield (480x512) 0.0160 51.35 61.46 60.63 55.09 
Flower (480x512) 0.0155 48.35 60.12 59.70 56.22 
Fruits (480x512) 0.0121 52.23 59.84 60.95 59.31 
Pens (480x512) 0.0102 48.34 59.14 59.13 57.66 
Average  0.0212 52.90 55.20 55.07 52.54 

 

The proposed method is also compared with another spatial domain data hiding technique. Ni et al9 suggested embedding 
the secret message by modifying the image’s histogram. The capacity of such a method equals to the histogram’s 
maximum value. For each image tested, capacity is calculated according to Ni et al scheme and the message’s size 
embedded for both methods equals to that of capacity. Results are presented in Table 8. The proposed method is applied 
by using different block sizes. There exist cases that Ni et al has better image quality. There is no practical rule derived 
as to for which image the proposed method has better performance. It depends on the XM(M,M) DPT coefficient, the 
message bit and the payload. For example smooth Lenna image has a better quality, in contrast to the noisy baboon 
image. That is because in noisy images the XM(M,M) coefficient is relatively higher than in smooth images. Thus in order 
to change this sign more additions of the identity matrix must be performed. On the other hand, in the smooth house 
image, a bigger message is embedded and consequently PSNR drops. The overall performance shows that the proposed 
method gives in average better image quality when using smaller block size. For big block size, the XM(M,M) coefficient 
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is higher, so it changes difficultly. In any case the proposed method with a capacity up to 0.25bpp for M=2 is superior to 
the Ni et al method. 

6. CONCLUSIONS 
The proposed data hiding method is blind, fragile algorithm that takes advantage of DPT properties. In fact it uses the 
DPT for deciding, in which way and how much to change some of the pixel date in order to hide the desired information. 
Specifically, image is divided in MxM blocks and the sign of XM(M,M) coefficient is examined. Negative or positive 
DPT coefficients, denote message bits of ‘0’ or ‘1’ respectively. If pixel values don’t satisfy this condition, the identity 
or anti-diagonal identity matrix is added to the pixel block. Experimental results show that the proposed data-hiding 
scheme is able to embed relatively large amounts of data with low image degradation. This method can be applied to 
color images for tamper proofing, image authentication or secret message communication. 
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