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Abstract—A high-speed hardware implementation of the 
MUGI pseudorandom number generator is presented in this 
paper. The MUGI generator is part of the ISO/IEC 18033-4: 
2005 standard and it is expected to be used in many 
applications. The design has been coded in VHDL and FPGA 
devices have been used for its hardware implementation. A 
maximum throughput equal to 7 Gbps is achieved for a clock 
frequency of 110 MHz. As no other MUGI implementations 
do exist, the comparison with previous keystream generator 
implementations such as RC4, E0, A5/1, are given. These 
comparisons prove that the MUGI implementation is much 
faster compared to these implementations. 

I. INTRODUCTION 
Wireless communications are expected to play a crucial 

role in the realization of the grand vision of 4G 
communications: the always best-connected scenario for 
anybody, to anything from anywhere at anytime. Wireless 
communications offer to the end-user the means for easy 
access to a global information and communications 
infrastructure. At the same time, wireless communications 
facilitate seamless connectivity amongst a host of 
computing, communications and sensing devices that 
collaborate to form a supporting ambient and pervasive 
computing environment.  

With the arrival of the information age, cryptography 
has grown to an essential tool for a wide segment of 
industry and commerce. It can be used to protect all forms 
of electronic communications such as fax, e-mail, cellular 
phones and home banking systems. Cryptography can 
replace the sealed envelope of a paper-oriented system and 
ensure privacy on electronic media. More important is its 
ability to prevent forgery of electronic documents, and to 
supply mutual authentication of senders and recipients of 
these documents. Without such tools, wide-scale electronic 
commerce using the Internet would have been impossible.  

Private-key cryptographic algorithms can be classified 
into block and stream ciphers. Block ciphers permute N-bit 
blocks of plaintext data under the influence of the secret key 
and generate N-bit blocks of encrypted data. Stream ciphers 
typically operate serially by generating a stream of 
pseudorandom key bits, the keystream (stream ciphers are 
also called pseudorandom number generators).  

Fig. 1 shows the general diagram of the cipher process 
with stream cipher. The stream cipher takes two parameters, 
the secret key, K, and the initialization vector, IV, and 
produces the keystream bits, zt. In stream encryption each 
plaintext symbol, Pt, is encrypted by applying a group 
operation with a keystream symbol, zt, resulting in a 
ciphertext symbol ct. In modern cipher the operation is the 
simple bitwise XOR. 

 

 
Fig. 1. The stream cipher process 

 
Decryption takes the substraction of the keystream 

symbol from the ciphertext symbol. With the bitwise XOR 
this is the same operation. 

The most known stream cipher used in many 
applications is the RC4 [1] and it was designed by R. Rivest 
in 1987. Moreover, there are many attacks and weaknesses 
mostly in key scheduling of RC4 [2]-[3]. Many attempts 
have taken place in order to propose new stream ciphers to 
match the current security levels.  

Following this direction the hardware implementation of 
the new pseudorandom number generator called Multi Giga 
(MUGI) [4] is investigated. MUGI generator has been 
adopted by the International Organization for 
Standardization (ISO/IEC) 18033-4: 2005 standard [5].  

This paper is structured as follows: In Section II the 
MUGI cipher is presented. In Section III the proposed 
architecture is analysed. In Section IV synthesis results and 
comparisons with previous published stream ciphers are 
given. Finally, Section V concludes the paper.  

II. MUGI PSEUDORANDOM NUMBER GENERATOR 
MUGI is a pseudorandom number generator (PRNG) 

used as a stream cipher. The design aims to be suitable for 
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both software and hardware implementations. MUGI has 
two independent parameters as input. The first one is a 128-
bit secret key while the second one is a 128-bit initial, 
public, vector. MUGI generates a 64-bit length random bit 
string in each round.  

Since the MUGI is a PANAMA-like [6] stream cipher it 
consists of four main operational modules. As the Fig. 2 
shows, similar to PANAMA, the Internal State is divided 
into two parts, State a and Buffer b.  

 

 

Fig. 2. A PANAMA-like stream cipher 
 
The Update Function is divided in proportion to the 

internal state. Note that each update function uses another 
internal state as a parameter. We denote the update function 
of State a and Buffer b as ρ and λ function respectively. The 
output filter f abstracts some bits of State a for each round.  

III. PROPOSED ARCHITECTURE 
The objective of the research described here is to 

ascertain how fast the MUGI pseudorandom number 

generator can operate on a synchronous hardware device. As 
such, the architecture which has been developed is 
implemented using the XILINX Virtex-E and Virtex-II [7]. 
The architecture that performs the MUGI pseudorandom 
number generator is shown in Fig. 3. As this figure shows 
the main parts of the proposed architecture are the State a, 
the Buffer b and the functions ρ and λ. In addition, one 128-
bit register is used for latching of the secret key and 
initialization vector. Also, the K/I init component is used for 
key and initialization vector transformations [4] before the 
algorithm initialization phase starts. The Auxiliary Buffer1 
holds the Buffer b data while the Auxiliary Buffer2 holds the 
State a data during the initialization phase. Finally, there are 
a 3x192 multiplexer (MUX) and two XOR gates, 128-bit 
and 64-bit respectively, accomplishing the generator 
architecture. 

The initialization phase of MUGI is divided into 3 steps. 
Firstly Buffer b with a secret key, K, is initialized. Secondly 
the initialization of the State a with the initial vector, I takes 
place. Finally, the whole internal state is mixed. So, when 
the key is transformed is fed by the State a through the IN2 
multiplexer input. Then, the a, iterates only the function ρ 
and puts a part of each a(t) into Buffer b as follows, 
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− = ρ . In the previous equation ιρ  means the i-

th iteration of ρ  and )0,(aρ  means the input from Buffer b 
is zero. In other words, the data stored into Buffer b are not 
used in this step. The Auxiliary Buffer1 is responsible for 
this. In addition the output data of the State a are never used 
in the first step of the initialization phase.  

 

Fig. 3. MUGI generator architecture



The Auxiliary Buffer2 is responsible for this. In the second 
step the mixed State a with value )0,()( 0

16 aKa ρ=  and the 
initial vector, I, are required. If the I is added to State a 
through the IN1 multiplexer input, State a is mixed again by 
16 rounds iteration of function ρ. So, the mixed State a is 
represented as )0),,((16 IKaρ . 

Finally, the last initialization phase step is a 16 rounds 
iteration of the whole update function Update, 

))(),0),,((( 1616 KbIKaUpdatea ρ=   (1) 

where the notation )(Kb  in the above equation denotes that 
Buffer b is initialized by the secret key K.  

For security purposes, the algorithm output bits should 
not be available to the users during the initialization process. 
So, a 64-bit register is located at the generator output that 
does not latch its input bits during the initialization process. 

After the initialization, the 64-bit register latches the 
generated bits and MUGI generates a 64-bit keystream. If 
we denote the output at round t as Out(t), then the output is 
given as,  

)(
2)( tatOut =      (2) 

In other words MUGI outputs the lower 64-bit of State a 
at the beginning of the round process. 

The State a and Buffer b are 192-bit and 1024-bit 
registers, respectively. Τhe update function of State a is the 
function ρ. It is a kind of target heavy Feistel structure with 
two F-functions and uses Buffer b as a parameter. The VLSI 
implementation of the function ρ is depicted in Fig. 4.  

 

 
Fig. 4. The ρ function VLSI implementation 

 
In addition, the hardware architecture of the F-function 

is depicted in Fig. 5. The bytewise substitution S-box is the 
same as the one in AES [8], while the linear transformation 
is the combination of a 4 x 4 matrix and a bytewise 
shuffling. MUGI uses MDS matrix which is the component 
of AES [8]. 

In addition, the function λ is the update function of 
Buffer b and uses a part of State a as a parameter. The 
mathematical background of function λ can be found in [4]. 
The hardware implementation consists of simple XOR 
operations and bit-shifting. Also, the values of the C0, C1 
and C2 constants are defined in [4].  

Finally, the Control Unit is responsible for the correct 
operation of the whole algorithm. 

 

 
Fig. 5. The F-function hardware architecture 

 

IV. EXPERIMENTAL RESULTS AND PERFORMANCE 
EVALUATION  

The proposed implementation was captured in VHDL 
using structural description logic. The implementation was 
simulated for correct operation using the test vectors 
provided by the specifications [4]. The VHDL code was 
synthesized for Xilinx (Virtex-E and Virtex-II) FPGA 
devices [7]. The implementation then was simulated again 
for the verification of the correct functionality in real time 
operating conditions.  

The required cipher S-boxes have been implemented by 
means of LUTs, increasing the algorithm time performance. 
The synthesis results for both Virtex-E and Virtex-II FPGAs 
are shown in Table 1. 

TABLE 1 
FPGA SYNTHESIS RESULTS 

FPGA 
Devices V200EBG352 2V500FG456 

Resources Used Utiliz. Used Utiliz. 

I/Os 196 76 % 196 75 % 

FGs 4183 89 % 3927 64 % 

CLB Slices 2092 89 % 1964 64 % 

DFFs 2437 44 % 2437 35 % 

F (MHz) 96 110 

Throughput 
(Gbps) 6.14 7 

 

The throughput is estimated after the initialization phase. 
Performance comparisons between the proposed system and 
previous published architectures are shown in Table 2. 
According to our knowledge, no other implementation of 
the MUGI pseudorandom number generator has been 
previously published. So, comparisons with others similar 
generators [9]-[14] are given in order to have a fair and 
detailed comparison of the proposed system.  



TABLE 2 
PERFORMANCE COMPARISONS 

Stream 
Cipher FPGA Device F (MHz) Throughput 

(Mbps) 
A5/1 [9] 2V250FG25 188.3 188.3 

A5/1 [10] nn 3000 3000 

HELIX [9] 2V250FG25 32.0 1024.0 

W7 [9] 2V250FG25 96.0 768.0 

RC4 [11] 2V250FG256 64 22 

E0 [12] 2V250FG25 189 189 

WG [13] ASIC 1000 125 

Achterbahn 
[14] ASIC 1000 8000 

MUGI#1 V200EBG352 96 6140 

MUGI#2 2V500FG456 110 7000 

 

MUGI#1 symbolizes the implementation on VIRTEX 
V200EBG352 FPGA, while MUGI#2 symbolizes the 
implementation on 2V500FG456 FPGA. The A5/1 is a 
synchronous single-bit stream cipher. As the above table 
shows the proposed implementations outperform the A5/1 
implementations in [9], [10]. The HELIX implementation 
[9] uses a 256-bit key and a 128-bit initialization vector and 
outputs an 8-bit keystream. In addition, the W7 [9] is a 
single-bit cipher that supports a key of 128-bit length. The 
well known RC4 [11] is a variable key-size stream cipher 
which produces an 8-bit keystream. Also, in [12] the 
implementation of the stream cipher, E0, which is used in 
Bluetooth is presented. In [13] and [14] the straightforward 
implementations of two new stream ciphers, WG and 
Achterbahn respectively, are presented. These ciphers have 
been submitted and are under consideration from the 
ECRYPT (European Network of Excellence for Cryptology) 
project [15]. The WG is a single-bit synchronous cipher 
while the Achterbahn is a synchronous stream cipher which 
has parallel implementation ability and produces a 
keystream with lengths equal to 1-, 2-, 4- and 8-bit per clock 
cycle. With this technique the time performance is 
increased. In our comparisons (Table 2) the faster case was 
selected. As Table 2 shows, the proposed MUGI 
implementations outperform all of the previous 
implementations in terms of time performance. Only the 
Achterbahn cipher has better performance compared to ours. 
However some Achterbahn security weaknesses do exist 
[16] that do not allow an effective substitution of MUGI by 
Achterbahn.  

V. CONCLUSIONS  
The MUGI pseudorandom number generator is the most 

recent generator that has been standardized. MUGI has 
undergone much cryptanalysis not only for all the standard 
attacks on stream ciphers but also using differential and 
linear cryptanalysis. At this time, none of these attacks have 
been proved successful.  

A MUGI high-speed hardware architecture is described 
in this paper and implemented by means of FPGA devices. 
Experimental results prove that the MUGI implementation 
is a flexible solution in applications with very high-speed 
specification demands. The implementation on FPGAs 
achieves a throughput of 6.14 Gbps or 7 Gbps, depending 
on the FPGA devices used.. 
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