
Low Power FPGA Implementations of 256-bit Luffa Hash Function
Paris Kitsos

Computer Science
Hellenic Open University, Greece

E-mail: pkitsos@ieee.org

Nicolas Sklavos
Informatics & MM Department,

Technological Educational, Institute of Patras,
Greece

E-mail: nsklavos@ieee.org

Athanassios N. Skodras
Computer Science

Hellenic Open University, Greece
E-mail: skodras@ieee.org

Abstract
Low power techniques in a FPGA implementation

of the hash function called Luffa are presented in
this paper. This hash function is under consideration
for adoption as standard. Two major gate level
techniques are introduced in order to reduce the
power consumption, namely the pipeline technique
(with some variants) and the use of embedded RAM
blocks instead of general purpose logic elements.
Power consumption reduction from 1.2 to 8.7 times
is achieved by means of the proposed techniques
compared with the implementation without any low
power issue.

1. Introduction

The most known hash function is the Secure Hash
Algorithm-1 (SHA-1) [1]. In recent years serious
attacks have been published against SHA-1 [2].
After that, the transition to the stronger SHA-2 [3]
family of hash functions was decided. The SHA-2
hash functions are included in the same general
family of hash functions as SHA-1. So, they could
possibly be attacked with similar techniques. This
led the National Institute of Standard and
Technology (NIST) to organize an effort to develop
more secure hash algorithms through a hash function
competition (SHA-3) for usage in the future.

Luffa hash function [4] has been submitted and
has been under consideration to SHA-3 competition.

Field Programmable Gate Arrays (FPGAs) are
being used increasingly in embedded general
purpose computing environments as performance
accelerators.

In this paper low power techniques for an FPGA
Luffa implementation are proposed. These
techniques are implemented in gate level and reduce
the amount of signal glitching within the circuit.
Recently, some Luffa hardware designs have been
proposed [5-7].

This paper is structured as follows. In Section 2
techniques for low power FPGA designs are
introduced. In Section 3, the core architecture of the
Luffa hash function is described while in section 4
the implementations of the low power techniques on
the proposed Luffa architecture are presented.
Synthesis results, comparisons with previously
published designs and estimations in power
consumption are given in section 5. Finally, Section
6 concludes the paper.

2. Designing for low power FPGA
The power consumption PTotal of an FPGA is

constituted by two components, namely the dynamic
power, DynamicP , and the static power, StaticP .

Dynamic power is dissipated when signals charge
capacitive nodes. The dynamic (switching) power is
dependent on the supply voltage V and operating
frequency f and equals to:

fCVPDynamic
2

2
1

= (1)

Static power, on the other hand, has nothing to do
with the activity of the circuit. Total static power is
the combined total of each transistor’s leakage
power and all bias currents in the FPGA. The static
power is equal to:

LeakageStatic VIP = (2)

Dynamic power makes up the larger portion of
the total amount of power consumed by an FPGA
design. The gate level low-power design techniques
that have been applied to current FPGA technology,
in order to reduce the dynamic power, are described
below.

Pipelining [8] is used in order to reduce the
amount of signal glitching within the circuit. A
pipelined design has less logic between registers and
therefore is less prone to glitching. Also, with less
logic between registers, the amount of interconnect
between registers is also reduced.

Clock gating is disabling the clock for the
inactive regions in a design to minimize signal
transitions and hence dynamic power [9]. Clock
gating provides a means of reducing switching
activity, by disabling the registers reading external
data; so they just keep their contents when they are
inactive.

Both positive and negative edge Flip-Flops are
also used. The double edge trigger (DET) pipeline is
actually employed [10-11]. In a DET pipeline, both
rising and falling edges of the clock signal are used.
A negative edge triggered Flip-Flop will hold the
output wire state for the first half of a clock cycle,
and when the clock signal toggles, the Flip-Flop will
assume a new logic value. Power is saved because
glitches are not propagated to logic circuit,
simultaneously with a reduction of the circuit latency
compared with the usual pipelining technique
described above.

Finally, RAM blocks instead of general purpose
logic elements can reduce the dynamic power
consumption [12]. The RAM blocks save general
logic resources because they do not carry any
programmable design routing with them.
3. Luffa core architecture

The hardware implementation of the Luffa hash
function is depicted in Fig. 1.

The Padder pads the input data and converts them
to an n-bit padded message. In the proposed
architecture an interface with 256-bit input for
Message is considered. The input n, specifies the
total length of the message. The padded message is
partitioned into a sequence of t 256-bit blocks m1,
m2, … , mt.

Fig. 2. Implementation of the message

injection function

The multiplexer, MUX, selects either the fix message
equal to 256-bit zeros or the message mi. The MUX
output, Mi is then used in order to generate a new
sequence of 256-bit string, H1, H2, … , Ht in the
following way. Mi and Hi-1 are processed as inputs to
the MI and the resulting 256-bit substrings are
XORed in order to produce the hash value (Z). The
outputs of the Luffa Round are concatenated and
used as the Hi-1 input to the Luffa Round. The Luffa
Round mainly consists of the MI function and the
permutation P. The implementation of the Luffa
Round is also illustrated in Fig. 1.

AddConstant

32

a0 a1 a2 a3 a4 a5 a6 a7

SubCrumb SubCrumb

32 32 32 32 32 32 32

MixWord MixWord MixWord MixWord

a0 a1 a2 a3 a4 a5 a6 a7

32 32 32 32 32 32 32 32

Fig. 3. Implementation of the step function

The implementation of the MI function is shown in
Fig. 2. It consists of four 3-input logical XOR gates
of 256-bit each one and three multipliers. Inside the
Q1 and Q2 permutations there is a tweak permutation
that is implemented by using combinational shifters.
The step function consists of the three functions,
SubCrumb, MixWord and AddConstant. At the
beginning the 256-bit data are stored in eight 32-bit
registers ak as shown in Fig. 3. The SubCrumb
function is composed of 32 substitution tables (S-
boxes). The MixWord function is a linear
permutation of two 32-bit words. The
implementation of this function is depicted in Fig. 4.
This module consists of four 2-input XOR gates and
four rotators.

Fig. 4. Implementation of MixWord

4. Implementations using power
reduction techniques

In this section, the gate level low-power design
techniques that have been applied to the Luffa
architecture are described.

The first pipeline technique with only positive
edge Flip-Flops is symbolized as Luffa_positive, the
pipeline technique with the use of gating clock is
symbolized as Luffa_gating and finally the pipeline
technique with positive and negative edge Flip-Flops
is symbolized as Luffa_negative. The technique with
RAM blocks is symbolized as Luffa_RAM.

In the Luffa_positive technique the pipeline
registers are placed between the components of the
Luffa round. Registers are placed after the MI
functions and between the tweak and steps inside the
Qi (i=1, 2, 3) permutations as shown in Fig. 5.
Registers are single edge triggered and the data are
transferred between two successive registers in one
clock period. So the latency of the circuit is
increased up to 10 clock cycles.

Fig. 1. Hardware implementation of the Luffa hash function

In the second pipeline scheme (Luffa_gating), the

same places for the pipeline registers are used and
each register is implemented by means of the Clock
Enable.

Fig. 5. Pipeline registers in Luffa_positive

technique

Finally, in the third pipeline scheme
(Luffa_negative) an inner pipeline with negative
edge triggered register (Flip-Flops) is used as shown
is Fig. 6. The negative edge triggered register is
inserted in the Qi (i=0, 1, 2) permutations between in
the third and forth step functions, which is roughly
in the middle of the round data path. The usage of
this technique leads to two very important results.
Firstly, the glitches are not propagated to logic
circuit and secondly the execution time of each
round is one system clock cycle, so the circuit
latency is not increased compared with the
architecture described in section 4. With regard to

embedded RAM blocks (Luffa_RAM technique)
there is a place in Luffa which could easily be used
for the implementation of S-boxes inside SubCrumb
function.

Fig. 6. Pipeline register in Luffa_negative

technique

Each SubCrumb function consists of 32 S-boxes,
so 32 embedded RAM blocks with 16 positions of 4-
bit each, are used.
5. Experimental results

The proposed implementations were captured by
using VHDL. The VHDL code has been synthesized
using XILINX ISE 10.1 tool and the target FPGA
device was XC5VLX50-3FF1153. The total power
dissipation is measured using XILINX XPOWER
analyzer tool [13]. The synthesis results,
performance analysis and power dissipation for the
Luffa architecture described in section 4 (denoted as
Luffa_conventional) are shown in Table 1.

Comparisons to previously published Luffa
implementations are also given. The proposed
implementation (Luffa_conventional) achieves a
throughput equal to 12.2 Gbps for a frequency of
63.5 MHz. For the throughput estimation a padded
message equal to 768-bits is used.

Table 1. Experimental results and comparisons
Archi-
tecture

Techno-
logy

FFs # Slice
LUTs

Freq
(MHz)

Bit
rate

(Gbps)
Propo-
sed

XC5VLX
50

2304 15749 63.5 12.2

[5] 0.18 μm 44972 GEs * 483 13.7
[6] 0.13 μm 11484 GEs * 250 0.32
[7] Stratix III 3247 16552 47 12
* The GEs (Gate Equivalent) is the area metric

for ASIC designs and is equal to the area of two-
input NAND gate.

The Luffa implementations in [5-6] use 0.18 μm and
0.13 μm libraries for their implementations and
achieve throughput up to 13.7 and 0.32 Gbps
respectively. In [7] a Stratix III FPGA was used and
achieves similar time and area performance to the
proposed one. For all previous implementations [5-
7] there are no estimations for power dissipation.

Table 2. Power estimations
Power Reduction

Technique
Luffa Architecture Power

(mW)
Positive Pipeline Luffa_positive 1.1

Pipeline and Gating
Clock

Luffa_gating 0.9

Negative Pipeline Luffa_negative 6.3
RAM Blocks Luffa_RAM 1.2
Conventional Luffa_conventional 7.8

In Table 2 the estimations in term of power

consumption are given. Each estimation corresponds
to one of the power reduction techniques described
in section 5. The estimations are produced by
XPOWER tool. The power dissipation for the
conventional architecture (described in section 4) is
given in Table 2.

It can be seen that the pipeline technique with
positive edge registers achieves a major
improvement in terms of power consumption up to
7.1 times compared to the conventional
implementation. Also, the positive edge pipeline
technique with gating clock achieves a higher
improvement of up to 8.7 times. In addition, Luffa
implementation with the use of RAM blocks for the
S-boxes implementation, consumes less power by
6.5 times. Finally, by using the pipeline technique
with negative edge registers better performance is
achieved in terms of power, i.e. power consumption
is reduced down to 24%.
6. Conclusions

Efficient techniques for reducing the power
consumption of the Luffa hash function FPGA
implementation have been presented in this paper.
The Luffa hash function is under consideration from
the NIST for the SHA-3 competition project.
Different versions of the pipeline technique and the
use of RAM blocks were introduced. With these
techniques a power reduction between 24% and 766

% was achieved compared to existing
implementations.
References
[1] SHA-1 Standard, National Institute of Standards and

Technology (NIST), Secure Hash Standard, FIPS
PUB 180-1, 1995, available on line at
www.itl.nist.gov/fipspubs/ fip180-1.htm

[2] X. Wang, Y. Lisa Yin, and H. Yu, “Finding Collisions
in the Full SHA-1,” Proc. 25th Annual Int.
Cryptology Conference- CRYPTO 2005, Santa
Barbara, California, USA, August 14-18, 2005,
LNCS 3621, 2005.

[3] Secure Hash Standard (SHS), National Institute of
Standards and Technology (NIST), FIPS PUB 180-3,
2008, available on line at
http://csrc.nist.gov/publications/ fips/fips180-
3/fips180-3_final.pdf

[4] C. D. Canniµere, H.Sato, and D. Watanabe, “Hash
Function Luffa”. The First SHA-3 Candidate
Conference, 2009, available on line at
http://ehash.iaik.tugraz.at/wiki/Luffa

[5] S. Tillich, M. Feldhofer, M. Kirschbaum, T. Plos, J.-M.
Schmidt, A. Szekely, “High-Speed Hardware
Implementations of BLAKE, Blue Midnight Wish,
CubeHash, ECHO, Fugue, Grostl, Hamsi, JH,
Keccak, Luffa, Shabal, SHAvite-3, SIMD, and Skein”,
2009, Cryptology ePrint Archive: Report 2009/510,
available on line at http://eprint.iacr.org/2009/510

[6] M. Kneževi´c and I. Verbauwhede, “Hardware
Evaluation of the Luffa Hash Family”, Int. Conf. on
Compilers, Architectures and Synthesis for
Embedded Systems, Proc. 4th Workshop on
Embedded Systems Security, Grenoble, France, 2009.

[7] A. H. Namin and M. A. Hasan, “Implementation of
the Compression Function for Selected SHA-3
Candidates on FPGA”, Report, available on line at
http://comsec.uwaterloo.ca/seminarfiles/ReviewSemi
nar2010/Implementation_SHA3_Candidates_on_FPG
A.pdf

[8] G. Sutter, E. Boemo, “Experiments in Low Power
Design”, Special Issue on Configurable Logic of
Latin American Applied Research (LAAR), pp 99-
104, Vol. 37, No. 1, Jan. 2007.

[9] Y. Zhang, J. Roivainen, and A. Mammela. “Clock-
Gating in FPGAs: A Novel and Comparative
Evaluation”, EUROMICRO Conf. on Digital System
Design: Architectures, Methods and Tools, pages
584–590, 2006.

[10] T. Czajkowski and S. D. Brown, "Using Negative
Edge Triggered FFs to Reduce Glitching Power in
FPGA Circuits", 44th Design Automation Conf., San
Diego, California, June 4-8, 2007, pp. 324-329.

[11] P. Kitsos, M. D. Galanis, and O. Koufopavlou,
“Architectures and FPGA Implementations of the 64-
bit MISTY1 Block Cipher”, World Scientific Journal
of Circuits, Systems, and Computers (JCSC), Vol. 15,
No. 6, Dec. 2006.

[12] I. Kuon and J. Rose, "Measuring the Gap Between
FPGAs and ASICs", ACM Symposium on FPGAs,
Feb. 2006, pp. 21-30.

[13] XILINX XPOWER analyzer tool, available on line at
http://www.xilinx.com/products/design_tools/logic_d
esign/verification/xpower_an.htm

